The Halting Problem

Entscheidungsproblem revisited again

If a problem can be formally defined, is it always true that every instance of the problem be decided by mechanical reasoning?

Formal definition = Mathematical logic

Mechanical reasoning = TM

We will outline the proof Alan Turing gave to show the negative answer to Entscheidungsproblem.

The accepting problem

accept(M, x) = 1 if M accepts input x 0 else

where: M is a TM for a decision problem x is an input string.

The undecidability of accept(M, x)

Theorem

accept(M, x) cannot be implemented by any TM. What is the difference between

 $accept(M, x)$ and SIM (M, x) ?

SIM(M, x) can be done by the UTM.

- \bullet SIM(M, x) may not halt
- \bullet But accept(M, x) by definition will always halt.

Assume that M^{accept} solves the accept problem.

Then we can construct the string $ENC(M^{\text{accept}})$

Define:

```
D(M) =! accept(M, ENC(M))
```
Since accept is decidable, D is also decidable.

```
M^D (M) = ! M<sup>accept</sup>(M, ENC(M))
```
Challenge: $D(M^D) = ?$

Does $D(M^D) = 0$?

- \Rightarrow accept(M^D, ENC(M^D))
- \Rightarrow M^D accepts END(M^D)
- \Rightarrow M^D(ENC(M^D)) = 1
- \Rightarrow D(M^D) = 1
- ⇒ *contradiction*
- by definition of D
-) by definition of accept
-) = 1 since M^D implements D

Challenge: $D(M^D) = ?$

Does $D(M^D) = 1$?

- \Rightarrow accept(M^D, ENC(M^D)) by definition of D
- \Rightarrow M^D does not accepts END(M^D)) by definition of accept
- \Rightarrow M^D(ENC(M^D)) = 0
- \Rightarrow D(M^D) = 0 $= 0$ since M^D implements D
- ⇒ *contradiction*

Challenge: $D(M^D) = ?$

The definition of accept always guarantees Maccept halts. But for SIM, there is another possibility:

SIM(M, ENC(M)) does not halt.

Does $D(M^D) = 0$?

- \Rightarrow accept(M^D, ENC(M^D)) = 1
- \Rightarrow M^D accepts END(M^D)
- \Rightarrow M^D(ENC(M^D)) = 1
- \Rightarrow D(M^D) = 1
- ⇒ *contradiction*

Does $D(M^D) = 1$?

- \Rightarrow accept(M^D, ENC(M^D)) = 0
- \Rightarrow M^D does not accepts END(M^D)
- \Rightarrow M^D(ENC(M^D)) = 0
- \Rightarrow D(M^D) = 0
- ⇒ *contradiction*

Contradiction in all cases:

So, the hypothesis that M^{accept} exists cannot be true.

Thus, the ACCEPT problem is undecidable.

The Halting problem

halt(M, x) = 1 if M will halt 0 else **Proof**: Observe: $accept(M, x) =$ if halt (M, x) then $SIM(M, x)$ else $\overline{0}$ end if **Theorem**: The halting problem is undecidable.

So, we can use M^{halt} to construct M^{accept}.