The Halting Problem

Entscheidungsproblem revisited again

If a problem can be formally defined, is it always true that every instance of the problem be decided by mechanical reasoning?

Formal definition = Mathematical logic

Mechanical reasoning = TM

We will outline the proof Alan Turing gave to show the negative answer to Entscheidungsproblem.

The accepting problem

accept(M, x) = $\begin{cases} 1 & \text{if M accepts input x} \\ 0 & \text{else} \end{cases}$

where: M is a TM for a decision problem x is an input string.

The undecidability of accept(M, x)

<u>Theorem</u>

accept(M, x) cannot be implemented by any TM.

What is the difference between accept(M, x) and SIM(M, x)?

SIM(M, x) can be done by the UTM.

- SIM(M, x) may not halt
- But accept(M, x) by definition will always halt.

Assume that M^{accept} solves the accept problem.

Then we can construct the string ENC(M^{accept})

Define:

```
D(M) = ! accept(M, ENC(M))
```

Since accept is decidable, D is also decidable.

```
M^{D}(M) = ! M^{accept}(M, ENC(M))
```

Challenge: $D(M^D) = ?$

Does $D(M^D) = 0$?

- \Rightarrow accept(M^D, ENC(M^D)) = 1
- \Rightarrow M^D accepts END(M^D)
- \Rightarrow M^D(ENC(M^D)) = 1
- \Rightarrow D(M^D) = 1
- \Rightarrow contradiction

- by definition of D
- by definition of accept
- since M^D implements D

Challenge: $D(M^{D}) = ?$

Does $D(M^{D}) = 1$?

- $accept(M^{D}, ENC(M^{D})) = 0$ by definition of D ⇒
- M^D does not accepts END(M^D) by definition of accept ⇒
- $M^{D}(ENC(M^{D})) = 0$ ⇒
- $D(M^{D}) = 0$ since M^D implements D ⇒
- contradiction ⇒

Challenge: $D(M^D) = ?$

The definition of accept always guarantees Maccept halts. But for SIM, there is another possibility:

SIM(M, ENC(M)) does not halt.

Does $D(M^D) = 0$?

- \Rightarrow accept(M^D, ENC(M^D)) = 1
- \Rightarrow M^D accepts END(M^D)
- \Rightarrow M^D(ENC(M^D)) = 1
- \Rightarrow D(M^D) = 1
- \Rightarrow contradiction

Does $D(M^D) = 1$?

- \Rightarrow accept(M^D, ENC(M^D)) = 0
- \Rightarrow M^D does not accepts END(M^D)
- $\Rightarrow M^{D}(ENC(M^{D})) = 0$
- \Rightarrow D(M^D) = 0
- \Rightarrow contradiction

Contradiction in all cases:

So, the hypothesis that M^{accept} exists cannot be true.

Thus, the ACCEPT problem is undecidable.

The Halting problem

 $halt(M, x) = \begin{cases} 1 & \text{if } M \text{ will } halt \\ 0 & \text{else} \end{cases} \qquad Observe:$ Theorem:
The halting problem is undecidable. $accept(M, x) = \\ if halt(M, x) \text{ then} \\ SIM(M, x) \\ else \\ 0 \\ end \text{ if} \end{cases}$

So, we can use M^{halt} to construct M^{accept}.